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Abstraet~A mathematical model for the description of pressure forces in averaged two-phuse flow 
equations for disperse fluid-fluid and sofid-fluid flows is obtained. The currently used engineering 
treatment is compared with this model and is found to be adequate when the pre~ure near the 
particles, bubbles or droplets is not very different from the volume-average pressure. In the case 
where large velocity differences exist between the phases or, in bubbly flow, when the bubbles 
undergo rapid growth or collapse, the engineering treatment is insufficient. The role of the pressure 
field of the continuous phase in the momentum equation of the disperse phase is also clarified. 
Finally, the model is extended to include viscous forces. 

1. I N T R O D U C T I O N  

The problem of the correct mathematical description of pressure forces in averaged 
two-phase flow models is a long-standing one with far reaching implications for both the 
physical realism and the mathematical structure of the models (see, e.g. Bour~ 1979; Sha 
& Soo 1979). Frequently the equation sets employed in engineering calculations do not 
conform to rigorously derived averaged equations but, nevertheless, appear to yield 
satisfactory results in many applications. The reconciliation of this conflict between 
engineering practice and mathematical rigour has been one of the motivations of the 
present study. To this end an attempt is made to clarify the mathematical and physical 
nature of pressure forces in the averaged momentum equations for general (fluid-fluid or 
fluid-solid) disperse flows. We believe that the reasons for the success of  many engineering 
formulations (Wallis 1969; Harlow & Amsden 1975; Liles & Mahaffy 1979; Spalding 1980; 
Smith 1980) clearly emerge from our results, as do the limitations of such models. 
Our analysis leads to the identification of a new pressure contribution for the continuous 
phase which arises from the difference between the volume-average pressure and the 
pressure at the interphase boundary. The physical origin and significance of this new 
contribution are explained in detail and the inadequacy of similar terms proposed in the 
past is demonstrated. We also show that the gradient of the pressure in the continuous 
phase is present in the momentum equation of the disperse phase as well, irrespective of 
its nature (fluid or solid). Finally, the results are extended to include viscous forces. 

Another feature of the present study is a particularly simple implementation of volume 
averaging which enables us to derive the conservation equations in a compact and 
transparent way. 

After completion of this work a recent paper by Rietema & van den Akker (1983) came 
to our attention in which equations identical to some of our results are derived. The method 
used by these Authors however appears to be rather ad hoc (in particular they do not make 
use of the averaging theorem [4]) and does not give a ready interpretation of certain 
interphase force terms. 
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Figure 1. The averaging volume Vwith definitions of the outer bounding surface of the continuous 
phase, So and of the disperse phase S,. The interfaces between the phases within the averaging 

volume ave denoted by Si. 

2. T H E  G E N E R A L  V O L U M E - A V E R A G E D  C O N V E R S I O N  E Q U A T I O N S  

The standard derivations of volume-averaged two-phase flow equations use the local 
instantaneous form of  the equations as the starting point for the averagingpro~iure.  
However, these local equations are themselves the result of  b a l a n ~  over finite volumes 
(see, e.g. Serrin 1959). Therefore it appears logically more satisfactory and, as it turns out, 
technically simpler, to use these volume balances as the starting point for the averaged 
equations. 

In the region occupied by the two-phase mixture we take each point x to be surrounded 
by an averaging volume V. For simplicity we take V to be independent of both x and time, 
although allowance for these dependencies could be introduced into our procedure if so 
desired. The portion of V which is occupied by the phase k is denoted by Vk. In general, 
the boundary of Vk consists of a portion Sk of the boundary S of V, and of interfaces 
contained within V which we collectively denote by S~. Figure 1 shows the surface of the 
averaging volume V broken up into its constituent parts So, the portion lying in the 
continuous phase, and Sd, the portion in the disperse phase. Note that Sc + St is a closed 
surface which encloses the continuous phase present within V, and similarly, Sd + S~ 
encloses the disperse phase. 

Let now Fk be a general conserved quantity relative to phase k, distributed with density 
f ,  per unit of mass. We can write the following balance equation for the total amount of 
F~ contained within the averaging volume: 

L d-~t fkP, d Vk = ( -  Pkfku, + O*) " ndS,  

+ [_p,f,(u,_v) . . d s , ÷  fv ' p,O, dV,. [I] 

In this equation 0k is the non-convective part of the flux with which Fk is transported, Ok 
is the rate of production of Fk per unit of mass, and Pk and ut denote the density and 
velocity fields of phase k. The first term in the r.h.s, of [I] accounts for the total transport 
of Fk into Vk across the boundary of the averaging volume which is stationary. The second 
term accounts for the transport across the interfaces contained within V, which are in 
general in motion with velocity v. The unit normal n is defined as directed outward from 

the phase k. 
In order to derive from [I] the averaged equation we introduce the volume fraction of 
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Figure 2. Illustration of the concept behind Slattery's theorem, [4], for a one-dimensional situation. 

phase k 

• , ffi r J r  [2] 

and the following definition of the (instantaneous) volume average for any scalar, vector, 
or tensor quantity qk 

<qk) ffi ~ qk d Vk. [3] 

We also make use of the following theorem, which relates the surface integral of any vector 
or tensor-valued quantity ~//k to the divergence of its volume average 

fs~ ,  . .  dS~ffi v. ~v ¢,k dVk. [4] 

Proofs of this important result can be found in Slattery (1967), Whitaker (1969) and Gray 
& Lee (1977). A very simple proof is also given in Prospcretti (1984). 

The basic idea behind this result is illustrated with reference to figure 2. Consider a 
one-dimensional situation. Then the r.h.s, of [4] is essentially the difference of two volume 
integrals located at x + dx and x, divided by dx, for dx --, 0. The part common to the two 
integration domains cancels, and only the contributions of two "slices" of  thickness dx 
survive, which are clearly the l.h.s, of [4]. 

With [2]-[4], making use of the constancy of V, we obtain from [1] the following general 
form of the volume-averaged conservation equation 

0 
a--t (ak<Pkf~)) + V " (ak<Pkf~) )  = F" (~k<dpk)) + ~k<PkOk) 

+ ~ [ -  p,fkCa, - v) + ~, ] • .  ~ , .  [5] 

For the case in which the conserved quantity F k is momentum, we have fk = uk, 06 = g, the 
body force, and ¢~k = -~pkl + ~ where Pk is the pressure, ~ is the viscous stress tensor, and 
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I is the 3 x 3 identity tensor. In this case [5] becomes 

at (~k(PkUk)) + F" (~k(PkUkU,)) = -- F (~tk(Pk)) -i- V • (~k(~k)) + ~ (--pkn + _Xk" n) dS, 
i 

IIs V PkU,(Uk -- V,)" ndS, + =k(Pk)g • [6] 

The pressure terms present in this equation arc 

'fs Ilk = - v(~Kp,)) - ~ p~n dS,. [7] 

We shall examine these terms in detail in the following. 

3. THE PRESSURE TERMS 

Expanding the gradient term in [7] we find 

1 
Ilk = p,ndS,. [8] 

v Js~ 

An alternative form for Ilk can be obtained with the aid of  an identity which is a 
consequence of  [4]. I f  one takes ~#k = I_ in this equation, one finds 

Vgk = ~ n dSk, [9] 

or, recalling that Sk + S~ is a closed surface, 

lfs V~k = - ~  n dSi. 
i 

[10] 

from which 

nk = -~kv (pk) - ~ fs, (pk- (p,))n dS, • [11] 

The current engineering practice consists in modelling/Ik as: 

Nk a ---- -- ~tkP' (Pk) + Fd d- IPam, [12] 

where Fd and F~ indicate the drag and added-mass forces per unit volume. In what follows 
we shall investigate the validity of this approximation in the case of disperse two-phase 
flow. Comparing this engineering approximation with [II] we see that the two could 
coincide if Fd + F~ could be identified with the integral term in [I I]. As will be shown in 
the following sections, this identification is at best an approximation, which is not always 
valid. We may note that the second tcrrn in [8] has caused a long-standing controversy (see, 
e.g. Sha & Soo 1979; Bour~ 1979) because, even in a situation of uniform pressure and 
vanishing velocity, it appears able to give rise to a flow if the spatial distribution of phase 
k is non-uniform. It is easy to show with the aid of [I0] that no such flow could occur 
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since, if the pressure is uniform, (Pk)=  Pk, and [8] becomes 

1 

which vanishes by [10] as it should. Note that the integrals over the interfaces in [9] and 
[10] do not vanish because, for consistency of the averaging process, the surface of the 
averaging volume has to "cut through" the disperse phase (Nigmatulin 1979; Prosperetti 
1984). 

The difficulty with the term (Pk)V~tk arises only if the Fd+ F~  in [12] is identified with 
the last term in [8], which is the integral of the phase pressure over the interfaces, rather 
than with the second term in [11], which is the integral of the excess pressure over the 
interfaces. 

In closing this section we wish to observe that, on the basis of [10], a surface average 
pressure ((Pk) is sometimes introduced by writing (Ishii 1975; Agee et  al. 1980) 

- -#  dS, = <<p,>> . dS, = <<p,>> W , .  

Actually this definition is too restrictive since it implies that the surface integral vanishes 
whenever V~k = 0, which is not necessarily true. An explicit expression for this surface 
integral will be given in section 5. It will be seen that the concept of a surface average 
pressure is indeed useful, but will have to be defined differently to avoid inconsistencies. 

4. PRELIMINARIES 

Although the conclusions to be arrived at here hold for general two-phase disperse 
flows, for definiteness we shall treat the case of bubbly flow, indicating along the way the 
changes required for other disperse flows. We shall use indices L and G to indicate the 
liquid and the gas, i.e. the continuous and the disperse phase, respectively. Clearly, by the 
definition of volume fractions, 

* t L + ~ =  1. 

In a multiphase flow, as in any composite medium, one typically deals with "microscopic" 
fields exhibiting rapid spatial fiuctuations over distances comparable with the size of the 
inhomogeneities. The purpose of averaging is to filter out these presumably unimportant 
fluctuations leaving relatively smooth, slowly-varying quantities which we may term 
macroscopic. In section 2 this filtering was partially achieved by the introduction of the 
averaged quantities defined by [3]. 

The general volume-averaged conservation equation [5], however, also contains the 
actual "microscopic" fields within the interface integrals. The principal aim of this paper 
is to express these terms by means of average quantities. Formal techniques based on the 
explicit identification of slow and rapid space scales have been developed 
(Sanchez-Palencia 1980; Papanicolau 1978) but so far they appear well suited only for 
linear problems and hence we proceed heuristically. We break up the pressure in the liquid 
into two parts 

p ~ p , + p , ,  [14] 

where the indices r and s denote the rapidly and slowly varying components, respectively, 
and the index L has been dropped for the time being. If a single bubble is moving in an 
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otherwise stagnant liquid [14] simply corresponds to breaking up the pressure into its static 
and dynamic parts, and the added mass and form drag forces on the bubble are given by 

fp = -- ~sbp,.nb dSb [15] 

since p,, being a constant in this case, makes no contribution. Here S~ is the bubble surface 
and ~ the outward-directed unit normal. It" now the liquid is flowing, p~ is the pressure 
distribution causing the flow and [15] no longer represents the total force on the bubble, 
but only the part due to its relative motion in the liquid. The total force on the bubble 
is now 

f ffi fp -- ~ p Jib dSt,.  
.J 

In view of the slow spatial variation of ps, in performing the integration we may set 
p, ~-Ps(Xb)+ ( X -  Xb) " Fps, where Xb is a point in the bubble, to find 

f = fp -- VbFps, [16] 

where Vb is the bubble volume and the identity 

= [1'7] 

has been used. Essentially the same argument as leads to [16] can be found in Landau & 
Lifshitz (1959), section 11. 

In a flowing liquid containing many bubbles we may apply a similar line of reasoning. 
Each bubble senses its environment through the pressure and viscous stresses acting on 
its surface. If the bubbles are not too close together on the average one may expect that 
the macroscopic liquid motion, non-uniformities in the bubble distribution, etc. will affect 
only the slowly varying component of the pressure (and the viscous stresses, which we 
neglect for the moment). To a first approximation, as far as p, is concerned, the bubbly 
liquid is locally uniform with the average macroscopic properties. This remark is important 
because it furnishes a prescription for the evaluation of  expressions such as [15] without 
the complications due to macroscopic non-uniformities in the mixture. 

The preceding discussion suggests that the slowly varying component p, be approxi- 
mately identified with the volume-averaged pressure field (p  > in the liquid, and within an 
averaging volume centered at x we represent Ps by: 

p,(x') --_ <p >(x) + (x' - x ) .  v<p ) .  [18] 

Finally we define the surface average of the rapidly varying pressure on the fiquid side of  
each bubble by 

1 T 
=-~b ~J) P" dSb [19] 

Js, 

which allows us to write 

p, = p  [2o] 

where p ~ is the deviation of p, from its mean value over the surface of a bubble. 



PR]~SURE FORCI~ IN DI~PEI~E TWO-PHASE FLOW 431 

It is obvious that one gets the same result by computing fp as the integral of p, or of  
p~. fp is determined by the variation of  the pressure over the bubble surface, but not by 
the average level/~ of this pressure which, we note, can have an order of  magnitude very 
different from that of p',. 

5, P R E S S U R E S  F O R C E S  O N  T H E  L I Q U I D  P H A S E  

We can now turn to the evaluation of  the interface integral in [7]. In this integral we 
have contributions from bubbles completely contained in the averaging volume and from 
incomplete bubbles cut across by the surface of  V. For one of the former we find by [14], 
[18], [17], [15], 

[21] 

In this equation n is the unit normal directed away from the liquid and hence opposite 
to nb used in the previous section. For convenience we temporarily drop the index L. The 
first term in [21] acts on the bubble like a buoyancy force in hydrostatics, directed towards 
regions of low average pressure. The explicit identification of this contribution to the total 
force on a bubble is an essential step in the derivation of the momentum equation of the 
disperse phase which will follow. 

For an incomplete bubble (figure 3) we have identically 

fAb Pllb dAb -~ fAb (P, "l- P )nb dAb "~" ~Ab (Pr -- P )nb dAb . 

Since, as remarked at the end of  the previou~ section, the form drag and added mass force 
fp is determined by the deviations of p, from/~ over the bubble surface, the second term 
of this relation can be identified with a fraction of  fr  This identification would be incorrect 
if the average surface pressure ~ had not been subtracted from p, because Ab is an open 
surface. To evaluate the first term we add and subtract the contribution ASc of that part of 

~ ,. itu 

Figure 3. The contribution from the surface of an incomplete bubble, 450 is the portion of the 
surface of the averaging volume lying within the bubble, n is the outwardly directed unit normal 
to the surface of the averaging volume and a b is the normal on the interface of Ab directed outward 

from the liquid phase. 
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the surface of the averaging volume lying within the bubble (see figure 3): 

[22] 

where we have made use of the fact that/~ is a constant so that the integral over Ab is minus 
that over ASc, The first two terms are the integral of Ps over the closed surface Ab plus 
ASo and, in view of [18], can be evaluated by using [17] to find -v~V(~p), where v~ is the 
part of v b lying inside the averaging volume. Combining the contributions of all the 
complete and incomplete bubbles in V we then find 

V pndSt= -~toV(~p) + Fp + ~ (ps + p ) n  dSo, 
I 

[23] 

where we have used Evb = ~to V and 

1 
Fp=-~ fs (P,-p)ndSi, [24] 

is the total added mass and drag force per unit volume on the bubbles. This quantity will 
be of the order of the product of the bubble number density and fr  For the last term of 
[23] we note that from [18] 

fsff,ndS~=(,p) f s~ ndSo+ V(,p). fs (X'- x)ndS~= V((,p)Vo~+~V(,p )) [251 

where the first term follows from [9] and the second one is computed in appendix A. 
Furthermore, by [4], 

l f s  ~ p /~Ln dS~ = V (~(fiL)~). [261 

In the l.h.s, we have the integral of  the liquid quantity/~z over surfaces within the gas phase. 
However, since Pz has a unique value for each bubble, this integral is well defined. The 
average in the r.h.s, is over the gas phase as is indicated by the superscript G. A physical 
interpretation of this term will be given in the next section. 

Ins, rung 125J and [26] into [23] we finally obtain 

-~ , pLn dS~- -aaV (PL) + F, + V [aa((PL> + (PL)~)], [27] 

from which the total liquid pressure force per unit volume, [7], is 

IlL "V(aL<pL>)  + o oV<pL> -- F ,  --  7[ao(<pL> --  

or, using eL = 1 -0~ ,  in the first term, 

II L - --~xL V<pL) -- F, - V(Ot~(~L>G). [28] 

We may remark that the term ct6V(pL) which reflects the tendency of the bubbles to move 
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towards regions of low macroscopic pressure is essential in obtaining aL~7(pL> from 
V(aL<pD). 

We can also compare our result [27] with the definition of surface pressure given at 
the end of section 3. Expanding the gradient term in [27] and using V0to = - VO~L we find 

The terra ~0L)+ ~L)  a can be identified with a surface average pressure. A term 
corresponding to Fp is usually accounted for separately in treatments which introduce 
(~0L)). The last term is however new and cannot be written in the form of  a surface pressure 
multiplied by V~L. The presence of this last term removes the inconsistency in the definition 
of (~OL)) given at the end of section 3 since it will give a contribution when V~L ---- O, 
provided that V((/~L) ~) is non zero. 

6. DISCUSSION 

Equation [28] represents the resultant of  the pressure forces acting on the continuous 
phase, which we have taken to be the liquid for definiteness although an identical result 
would be found if the continuous phase were the gas. This result admits of a simple 
physical interpretation in the following terms. 

Consider the slowly varying pressure component first. With reference to figure 4, if the 
pressure everywhere in the shaded region bounded by the heavy line were ~L) ,  the 
pressure force on the material in the shaded region would be --(VL + V6.c)~'~L>, when 
Va.c is the total volume of the bubbles completely contained in V. To obtain the force on 
the liquid only we must subtract the pressure force exerted by the internal bubbles, which 
is the buoyancy force identified in [21], amounting to -Vo.cV<pL). The result is then 
- VLV(PL), or --ULVQ~L) per unit volume. We must now correct this for the fact that 
the pressure acting on the liquid at the interfaces St is in fact not ~OL) but l, pL ~ + p~ +/~n 
(see [14] and [20]). The second term, upon integration over a bubble surface, gives rise 
to the added mass and pressure drag forces on that bubble. The sum of all such 
contributions is F, the sum of the added mass and pressure drag forces per unit volume. 
For the last term PL, which is constant for each bubble, only the incomplete bubbles make 
any contribution. Referring to figure 3, the integration can be carried out over ASo rather 
than Ab, and by the averaging theorem [3] the contribution of all the incomplete bubbles 
is V(~(~L>°), defined by [26]. 

Figure 4. Interpretation of the result [28]. 
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Upon comparison of the result [28] with the usual engineering approximation [12], it 
is seen that the two coincide apart from the last term. As can be seen from [19], this term 
is small when the average pressure over the surface of the bubbles is close to the 
volume-average pressure <PL>. One case in which this approximation does not hold is that 
of large relative velocity between the phases. As a simple example, from the potential flow 
pressure distribution around an isolated sphere (Landau & Lifshitz 1959) and the definition 
[19] we obtain 

1 
~L = - ] p L ( ~  - uL) 2 

so that 

</~L>~ = ~-~ ~L dV~ ~- - -]  pL(U~-- UL) 2 , 

if =G is small and uo - UL is approximately constant over V~. 
Another example in which/~L may be sgmncant is that of a growing or collapsing 

bubble since, near the bubble, a pressure gradient must be present in the liquid to cause 
a motion in the radial direction. In the case of an isolated bubble of radius R at rest relative 
to the liquid, the difference between the average surface pressure and the pressure "'at 
infinity", which may be identified with <PL) (van Wijngaarden 1968), is given by the 
Rayleigh-Plesset equation (Plesset & Prosperetti 1977): 

r _3(dRy 7 
YL P~LR-~+ 2\  dt/_] " 

The term Iz(ao<~L> ~) acts as a source of momentum for the liquid, the physical significance 
of which, in this second example, can be appreciated by considering the situation shown 
in figure 5, which refers to the case of bubbly flow in a pipe with a spatial variation of 
the number of bubbles. If the bubbles are expanding, Q~L> ~ > 0 and the term in question 
tends to increase the velocity of the liquid in the direction in which u¢ decreases. The 
bubbles tend to "push away" the liquid and part of the radial momentum associated with 
their expansion is converted into linear momentum along the direction of the flow. 
Similarly, if a~ is uniform but </~L> c is not because some bubbles are expanding more 
rapidly than others, the liquid tends to flow away from the region occupied by the more 
rapidly expanding bubbles. 

7. P R E S S U R E  F O R C E S  ON THE D I S P E R S E  P H A S E  

Let us now turn to the pressure forces acting on the disperse phase. If  viscous forces 
and change of phase effects are neglected the pressure in the gas, which we shall denote 

0 0 o 
o 0 

0 0 o o o 

% ° ×o 
o 0 0 o 0 < o 

0 0 

Figure 5. Sketch of the flow induced in a pipe by a non-uniform population of expanding bubbles. 
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by Pa, is related to the pressure PL in the liquid phase by 

PO --  eL  ----- { C,  [29] 

where ~ is the surface tension coefficient and C is the interfacial curvature. The contribution 
coming from a typical internal bubble is then 

~8bPGnb dSb --'-- ~sbpLnb dSb + ~sb~Cnb dSb. [30] 

Observing that the normal appearing here is the opposite of the one used for the 
continuous phase, it is seen that the first integral in the r.h.s, is the negative of the one 
appearing in the l.h.s, of [21]. For constant surface tension, the second integral vanishes 
since a force internal to the bubble surface cannot give rise to a net resultant. A formal 
proof of this fact is contained in appendix B. 

As for each bubble cut across by the surface of the averaging volume, we consider 
together the contribution of the interface and of the portion of the surface of V within 
the bubble. With reference to the notation of figure 3 we then have the following expression 
for the total pressure force on the gas of an incomplete bubble: 

fb = -- fAbpcnb dAb-- ;asoP~n CLSG, [31] 

which, since po is very nearly uniform in the bubble, can be evaluated approximately using 
the Taylor series expansion po gP~o + ( x -  Xo)'Vpo and [17] to obtain 

fb  = - -  V ; , V p o  , [32] 

where vg is the part of the volume vb of the bubble contained within the averaging volume. 
On the other hand, to the same approximation, the integral in the l.h.s, of [30] is vbFpo 
so that, from [30] and [21], 

and, substituting in [32], we find 

fb = -- V'bV ( p , )  + ~ f,. [33] 

In conclusion, adding together all the contributions from the complete and the incomplete 
bubbles we find 

[34] 

This result also applies when the disperse phase is a solid. In this case for the internal 
particles [30] holds with ~" - 0 and pon replaced by _¢i • n, where_el is the stress in the solid at 
the interface. The r.h.sl of [32] would be replaced by vgV. %, again leading to [33], In the 
case of a liquid disperse phase the same relations hold, provided that the pressure field 
within each droplet can be approximated by a linear function of position. 
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The result [34] is precisely of  the engineering type [12]. The same pressure gradient is 
seen to act on the disperse phase as on the continuous phase. The physical reason lies in 
the fact that the internal pressure in each particle has no relevance for the translational 
motion of that particle, which is caused rather by the pressure distribution in the 
surrounding medium. Of course, at high particle concentrations collisions may also 
contribute a stress-like term to the disperse phase momentum equation (see, e.g. Savage 
1983). In our formulation this situation would manifest itself as a growth in importance 
of the rapidly varying pressure contribution and would appear in the force per unit volume 
F. 

In conclusion, adding the results for the pressure forces on the continuous and disperse 
phases given by [28] and [34] we obtain the following expression for the total pressure force 
per unit volume of the mixture: 

//L +/ /G = - v [<pL> + ao<.~S],  

or, equivalently 

I IL+I la= --V[aL(PL> + ~c((PL) + (PL>~)] • [351 

It is interesting to consider the meaning of this result in the case of  bubbly flow in a pipe. 
The net pressure force on the mixture contained between the sections L1 and/-2 of figure 

6 is 

_ fsLPLn dSL-- fs  PGn dS¢= -- VV(aL(PL> + C~G(pc) ) , [36] 

where use has been made of the averaging theorem [4] and So and St are the areas of the 
sections L1 and ~ occupied by the gas and liquid phases, respectively. This result differs 
from [35] because p~ ~ PL + ffL due to the surface tension force. However [36] is not the 
total force acting on the mixture through the planes LI and/~.  Surface tension forces also 
exist at the intersections of L1 and/-.2 with the bubble boundaries as shown by the arrows 
in figure 6. The effect of  these forces is precisely to cancel the contribution to Pc coming 
from surface tension and therefore, when all the forces are correctly accounted for, [35] 

is obtained. 

I 

0 o 
I 

dS 6 ~ O 
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L I  
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0 
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Figure 6. Sketch of bubbly flow in a pipe for the digression of [35]. 
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8. VISCOUS STRESSES 

The previous considerations can be extended to take into account viscous forces on the 
continuous phase. Let us denote by Tk the resultant of the viscous stresses on the phase 

k; from [6] we have 

Tk = V. (=k(~_k)) + p ~-k" n dS~. 
i 

Again, as in [14], we can split the viscous stress tensor into slowly and rapidly varying 

parts, • = L + L, and the viscous drag force on each bubble is 

dS  b . [37] 

The argument leading to [28] can be followed without modifications for each tensorial 
component ~# and the final result is 

TL = O~LV " ( ~ - L )  - -  Fd + [7. (O~G(~_L)G), [38] 

where Fd is given by an expression similar to [24] and is the total viscous drag force per 
unit volume. The surface average ~L of the rapidly varying part depends on the relative 
motion between bubble and liquid. For instance, for Stokes flow around a solid sphere 
(which is appropriate for bubbles in water due to surface contamination), only the 
component of -~L with both indices in the direction of the relative motion is non-zero and 

has the value 

1/,t ( u a -  UL). = 

Combining [28] and [38] we have for the total stress forces on the liquid phase 

[39] 

where % = - p t #  + ~# is the total stress tensor and F = Fd + Fp. This result can of course 
also be obtained directly by following the same procedure leading to [28] using o 0 in place 
of p. Similarly we may conclude that for the disperse phase 

R~ + To ffi ~GP'. (o'G) + F. [40] 

9. CONCLUSIONS 

In this paper we have analysed the pressure forces at work in a disperse two-phase flow. 
The key to the analysis has proven to be the recognition of the existence of two different 
components of the pressure in the continuous phase with slow and rapid spatial variation, 
respectively. The first component has been identified with the volume average pressure, and 
acts on each bubble, droplet or particle as an effective "buoyancy" force. The second 
component gives rise to the pressure drag and added mass forces. The combination of these 
effects is in agreement with recently used engineering models of  two-phase flow. However, 
the rapidly varying spatial component is also responsible for an additional term [26] which 
has not previously been identified. Situations in which this new term can be important are 
those in which the pressure averaged over the surface of the bubble or particle is 
significantly different from the volume average pressure in the continuous phase. This 
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could happen at high relative velocity, or for expanding or collapsing bubbles. This latter 
situation is depicted in figure 5, where the need is evident for a force driving the liquid 
from fight to left in response to the growth of the bubbles. The new term is present in 
the equation of motion for the continuous phase [28] but not in that for the disperse phase 
[34] since an average surface pressure cannot have any effect on the translational motion 
of an individual bubble, droplet or particle. The results are extended to include viscous 
forces in [39] and [40]. 

As a final point of interest our development includes in section 2 a very simple 
implementation of volume averaging, which exploits a theorem due to Slattery (1967), [4]. 
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APPENDIX A 

Here we wish to obtain an approximate value for the integral 

Iij ffi ~ (x' - x)t" n I • dSo, [A1] 

where x is the center of the averaging volume V and x' the variable of integration. From 
the point of view of an average description of the phases the value of this integral can only 
depend on the distribution of the gas as described by 0~ and its derivatives and hence must 

have the form 

I# Iwol, v % . . . ) 5 #  + g( o, Iv ol, • [A2] 

(This presupposes that the averaging volume does not have any preferred direction, as is 
necessary for a consistent averaging procedure in three dimensions. A corresponding result 
however can also be derived for instance for the case of one-dimensional modelling of pipe 
flow.) 

On purely dimensional grounds all the derivatives appearing in [A2] have to be 
multiplied by a length I related to the size of the averaging volume. On the other hand 
the derivatives themselves must be of order 1/L, where L is a characteristic length of the 
system, and for averaging to be meaningful, one must have 1 ,~ L. Therefore we can 
approximate [A2] by 

I# ~- f(cto, O, 0...)5# + O(I/L ). 

The dependence of f on 0~ can be established by considering the case in which the bubbles 
are distributed uniformly over the surface of the averaging volume. It is obvious that in 
this situation doubling, for example, the number of bubbles, will also double the value of 
I#. Hencef0to, 0, 0 .... ) must be proportional to ctc. To establish the value of the constant 
of proportionality wc can consider the particular case ~ -- I. The surface S~ is now closed 

and the integral in [Al] therefore has the value V. This shows thatf(ct~, 0, 0 .... ) ffi o~c so 
that 

I u = ot~#+ O(I/L), 

which is the result used in [25]. 

A P P E N D I X  B 

The net surface tension force over a closed surface 

Consider a portion AS of a closed interface separating two fluids. The total surface 
tension force AF acting on dS can be expressed as the integral (Batchelor 1968) 

AF---- - - ~  ~ x dl, 
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where £ is the line bounding AS, n is the outward unit normal to AS, and the orientation 
of the line is related to that of the normal by the usual right-hand convention. 

Consider now the projection of AF on an arbitrary constant vector e, 

r 
a F . e =  - ~ )  ~e. (n 

or, by Stokes' theorem, 

x dl )=  -~¢  ((e x n). dl 

AF.e= -~asV X (~e × n).ndS. 

If we consider the resultant surface tension force F on the whole surface S, we then have 

F . e =  - f s  y x (~e x n ) - n d S  = 0 ,  [B1] 

by the divergence theorem. 
However, 

V × (~e × n) = e (n .  F'~ + 0 v .  n) - ( e .  JV£)n - £ ( e .  IV)n, 

and the first term vanishes since F~ is tangent to the surface, while the last term vanishes 
when dotted into n, since [(e" 17)n] • n = e • Iz[(1/2)n 2] = 0. Hence, by the vanishing of [B1] 
and the arbitrariness of e, we conclude that 

fs~(V'n)ndS= fsV~ dS 
which shows that the first integral vanishes for constant surface tension ~. Since the local 
curvature C on S equals V • n, this proves the assertion made in the text. 


